The heat pump's annual energy consumption is 6252.01 kWh, while the system's annual energy consumption is 9100.47 kWh. Analyzing the water temperature change graph for each month's data reveals that the system can achieve 50 ☌ during the water supply time each month. After a qualitative analysis of the heat from the heat source, the efficiency of the linked heat pump and the conventional air source heat pump was compared. The Berlage calculation was used to determine the solar radiation received on the collector's surface. The heat balance equation for flat plate solar collectors was used to compute the intensity of solar diffused radiation. The daily hot water needs can be estimated roughly based on information about solar radiation. The output temperature of the hot water that the heat pump circulates is then determined. The performance coefficient is then calculated by the second law of thermodynamics without considering the pipeline's pressure drop and heat loss. The heat pump operation is first investigated using the inverse Carnot cycle. The TRNSYS tool is employed in this work to simulate a solar-coupled air source heat pump system. To address the issues with solar water heating systems taking up a lot of space, unstable hot water supply, air source heat pumps susceptible to frost in the winter, and low energy efficiency.